Accurate Values for the Nonrelativistic Energies of the Lowest Singlet and Triplet S-States of the ⁴He-Isotop

Heinz Kleindienst, Gerhard Pauli, and Wolfgang Müller*

Institut für Physikalische Chemie, Universität Düsseldorf, Universitätsstr. 1, D-4000 Düsseldorf, Federal Republic of Germany

Accurate lower and upper bounds for the nonrelativistic lowest energies ${}^{1}E_{0}$ and ${}^{3}E_{0}$ of the singlet and triplet-system of the ⁴He-Isotop are calculated with the linearized method of variance minimization. The same was done for ${}^{1}E_{1}$ the energy of the first excited S-state $2{}^{1}S$.

The results especially for ${}^{1}E_{0}$ and ${}^{3}E_{0}$ in a.u. are

 $-2.9033076997_5 \le {}^{1}E_0 \le -2.9033076921_8$

 $-2.1749324263_7 \le {}^{3}E_0 \le -2.1749324245_9$

i.e. the values are determined with an absolute error smaller than 0.00167 cm⁻¹ for ${}^{1}E_{0}$ and 0.00039 cm⁻¹ for ${}^{3}E_{0}$.

Key words: Eigenvalue problems, nonrelativistic energies of the ⁴He-Isotop, nuclear motion.

1. Introduction

In a previous work [1] the groundstate energy ${}^{1}E_{0}$ of the He-atom in the infinite nuclear mass approximation was determined with an absolute error smaller than 0.0022 cm⁻¹. As mentioned but not explicitly explained the calculation in that paper was done with a Schrödinger operator transformed in symmetry adapted coordinates

 $u = y + z, \qquad v = y - z$

using the notation as in [2].

^{*} Permanent address: Rechenzentrum der Universität Düsseldorf

If the nuclear motion is taken into account the corresponding Schrödinger operator in these coordinates is

$$H = H^{(\infty)} + H^{(\kappa)}, \qquad H^{(\infty)} = H_0 + V$$

with

$$H_{0} = \begin{cases} -\frac{\partial^{2}}{\partial x^{2}} - \frac{2}{x} \frac{\partial}{\partial x} - \frac{\partial^{2}}{\partial u^{2}} - \frac{4u}{u^{2} - v^{2}} \frac{\partial}{\partial u} - \frac{\partial^{2}}{\partial v^{2}} + \frac{4v}{u^{2} - v^{2}} \frac{\partial}{\partial v} \\ -\frac{2u(x^{2} - v^{2})}{x(u^{2} - v^{2})} \frac{\partial^{2}}{\partial x \partial u} + \frac{2v(x^{2} - u^{2})}{x(u^{2} - v^{2})} \frac{\partial^{2}}{\partial x \partial v} \end{cases}$$
$$V = \frac{1}{x} - \frac{8u}{u^{2} - v^{2}}$$
$$H^{(\kappa)} = \frac{1}{\kappa} \frac{4}{u^{2} - v^{2}} \left[(x^{2} - u^{2}) \frac{\partial^{2}}{\partial u^{2}} - 2u \frac{\partial}{\partial u} - (x^{2} - v^{2}) \frac{\partial^{2}}{\partial v^{2}} + 2v \frac{\partial}{\partial v} \right]$$

with

$$\kappa = 2 \frac{m_k}{m_e} = 14698,36 \quad (m_k = m_{^4\text{He}}).$$

These coordinates have the advantage that all integrals needed for the calculation of $||H\psi||^2$ and $(H\psi, \psi)$ have a remarkably simple form and could be expressed explicitly as it is shown in the appendix.

Because $||H\psi_{prs}|| < \infty$ for the used basis functions

$$\psi_{\text{prs}} = x^p u' v^s e^{-\alpha u}, \qquad \alpha > 0 \tag{1}$$

all $\psi_{prs} \in D_H$ with D_H as the domain of H.

2. The Calculation of the Eigenvalues.

The determination of approximate values λ^* and the corresponding errors F^* for ${}^{1}E_{0}$, ${}^{3}E_{0}$ and ${}^{1}E_{1}$ was done with the linearized method of variance minimization and the Wieland iteration, which yields a very effective method for the calculation of the absolutely lowest eigenvalue. With the trick mentioned in [3] every isolated eigenvalue could be made the absolutely smallest.

In order to obtain good lower bounds Temple's formula

$$E_i \ge E_i^* = \lambda_i^* - \frac{F_i^*}{\rho_i - \lambda_i^*}$$
⁽²⁾

- notation as in [1] - was used for the lowest singlet- and triplet S-states as well as for the first excited S-state in the singlet system.

It has to be kept in mind that the application of Temple's formula demands a ρ_i with $E_i < \rho_i < E_{i+1}$ where E_{i+1} is the immediately following eigenvalue of E_i of H in the considered Hilbert-spaces. Remember that the singlet- and the

dim V_n	¹ λ [*] ₀	$^1F_0^*\cdot 10^8$	³ λ ⁶	$^3F_0^*\cdot 10^8$	¹ λ ¹	$^1F_1^{st}\cdot 10^6$
203	-2.903304194449_{7}	749.72600	-2.174932364262_{2}	12.26050	-2.145483862 ₈	34.59500
308	-2.903307512057_3	49.08290	-2.174932422304_{1}	1.85902	-2.145656587_{7}	5.42210
444	-2.903307682372_{6}	7.12253	-2.174932424415_3	0.57123	-2.145678144_{9}	0.98774
615	-2.903307691372_{5}	2.84683	-2.174932424444_3	0.20895	-2.145680517_{9}	0.28778
825	-2.903307692019_{5}	1.55938	-2.174932424544_{1}	0.08399	-2.145680763_{8}	0.13317
946	-2.903307692111_{9}	1.19075	-2.174932424565_{5}	0.05483	-2.145680782_{6}	0.09791
1078	-2.903307692136_{2}	0.92482	-2.174932424578_{4}	0.03644		
1378	-2.903307692182_{7}	0.57383	-2.174932424591_{6}	0.01686		

Table 1. The λ^* - and F^* -values for 1E_0 , 3E_0 and 1E_1 of the 4 He-Isotop in a.u.

	dim V_n	λ^*	$F^* \cdot 10^4$	$\lambda^* - \sqrt{F^*}$
3 ¹ <i>S</i>	203	-2.0549	9.028	-2.085
^{3}S	203	-2.0668	1.724	-2.080

Table 2. The λ^* and F^* -values for the 3^1S - and 3^3S -state in a.u.

triplet-states respectively are elements of separate symmetry adapted Hilbertspaces in which the eigenvalue problem and Temple's formula can be formulated independently.

The method of variance minimization gives suitable ρ_i 's if it is ensured that the error interval $[\lambda_i^* - \sqrt{F_i^*}, \lambda_i^* + \sqrt{F_i^*}]$ contains one eigenvalue only, which has to be E_i . In the case of the ⁴He-Isotop the latter is guaranteed – for sufficient small F_i^* – by the knowledge of the correct sequence of the eigenvalues from spectral data [4]. Independently suitable ρ_i 's can be chosen from lower bounds of the eigenvalues of the operator $H^{(\infty)}$, because it can be shown that $H^{(\kappa)}$ is a positive operator.

The results of the calculations of the λ_i^* values and corresponding errors F_i^* as a function of the dimension of the vectorspace V_n spanned by the ψ_{prs} with constant α 's in (1) are shown in Table 1. The exponent α was chosen to $\alpha = 3.5$ for ${}^1\lambda_0^*$, $\alpha = 1.1$ for ${}^3\lambda_0^*$ and $\alpha = 1.65$ for ${}^1\lambda_1^*$.

Upper bounds for the E_i are the corresponding λ_i^* . The listing of the Ritz values λ' [5] is omitted although they are calculated too. As a matter of fact they are rarely better than the corresponding λ^* 's but their errors are considerably worse than the minimal errors F^* obtained with the λ^* 's.

To get lower bounds for the E_i 's the necessary ρ_i 's were evaluated from rough λ^* and F^* values for the 3^1S - and 3^3S -states. Latter were calculated by matrix diagonalization with Householder's method. The results in a.u. are shown in Table 2.

With ${}^{1}\rho_{1} = -2.085$, ${}^{1}\lambda_{1}^{*} = -2.145680782_{6}$ and ${}^{1}F_{1}^{*} = 9,791 \ 10^{-8}$ we get the lower bound ${}^{1}E_{1}^{*} = -2.1456823_{9}$ from Eq. (2), i.e.

 $-2.1456823_9 \le {}^1E_1 \le -2.1456807_9$

and ${}^{1}E_{1}$ is determined up to an absolute error smaller than 0.35 cm⁻¹.

With ${}^{1}\rho_{0} = {}^{1}E_{1}^{*}$ and ${}^{3}\rho_{0} = -2.080$ the bounds for ${}^{1}E_{0}$ and ${}^{3}E_{0}$ given above were calculated using the optimal λ^{*} – and F^{*} values taken from dim $V_{n} = 1378$.

3. The Influence of the Nuclear Motion for the $1^{1}S$ and $2^{3}S$ -State and the Comparison with the Experimental Data

The calculated eigenvalues E_i for the operator $H = H^{(\infty)} + H^{(\kappa)}$ of the ⁴He-Isotop, where the nuclear motion $(H^{(\kappa)} \neq 0)$ is taken into account from the beginning,

together with the eigenvalues $E_i^{(\infty)}$ for $H^{(\infty)}$ and the experimental values of Herzberg [6] allow the discussion of two effects: first an accurate estimation of the influence of the nuclear motion, second the calculation of bounds for the relativistic corrections (including the Lamb-shift).

a) Nuclear Motion

The influence of the nuclear motion as a whole is given by the difference

$$\Delta_i = E_i - E_i^{(\infty)}.$$

Bounds for ${}^{1}\Delta_{0}$ and ${}^{3}\Delta_{0}$ are obtained from

 $E_0^* - \lambda_0^{*(\infty)} \le \Delta_0 \le \lambda_0^* - E_0^{*(\infty)}$

with the lower and upper bound ${}^{1}E_{0}^{*(\infty)}$ and ${}^{1}\lambda_{0}^{*(\infty)}$ for ${}^{1}E_{0}^{(\infty)}$ from [1] in a.u.

 $-2.903724386_6 \le {}^1E_0^{(\infty)} \le -2.903724376_9$

and the analog values for ${}^{3}E_{0}^{(\infty)}$ from the result of Pekeris [7]

 $-2.175229381_0 \le {}^3E_0^{(\infty)} \le -2.175229378_2.$

We get

 $^{1}\Delta_{0} = 91.452 \pm 0.002 \text{ cm}^{-1}$

$$^{3}\Delta_{0} = 65.173 \pm 0.002 \text{ cm}^{-1}$$
.

Usually the nuclear motion is taken into account in the manner of Bethe and Salpeter [8], i.e. by the subsequent correction of the $E_i^{(\infty)}$ values, because only these values with the eigenfunctions $\psi_i^{(\infty)}$ are available from calculations in the infinite mass approximation. Apart from the fact, that the electron mass m_e is replaced by the reduced mass $\mu = m_e \cdot m_k/m_e + m_k$ an additional term, the mass-polarization $\varepsilon_m^{(i)}$ appears. Together with the approximated values

$${}^{1}\tilde{\varepsilon}_{m}^{(0)} = 4.7854 \text{ cm}^{-1}, \qquad {}^{3}\tilde{\varepsilon}_{m}^{(0)} = 0.2238 \text{ cm}^{-1}$$
 (3)

from Pekeris [9] the " μ -correction" of ${}^{1}E_{0}^{(\infty)}$ and ${}^{3}E_{0}^{(\infty)}$ yields the following amounts for the nuclear motion

$${}^{1}\tilde{\Delta}_{0} = 91.490 \text{ cm}^{-1}, \qquad {}^{3}\tilde{\Delta}_{0} = 65.175 \text{ cm}^{-1}$$

obtained from

$$\tilde{\Delta}_i = \frac{m_k}{m_e + m_k} E_i^{(\infty)} + \tilde{\varepsilon}_m^{(i)} - E_i^{(\infty)} = -\frac{2}{2 + \kappa} E_i^{(\infty)} + \tilde{\varepsilon}_m^{(i)}.$$

They are in good agreement with the correct Δ -values given above.

b) The Relativistic Effects

Experimental values for atomic energies are referred to the first ionization potential which was determined for the ⁴He-Isotop by Herzberg [6] to

$$I.P. (^{4}He) = 198310.8_{2} \pm 0.15 \text{ cm}^{-1}$$

In order to compare experimental with theoretical values the beginning of the continuum of the operator H has to be known. As was shown first by Žislin [10] for an atomic system the bottom of the continuum of H is identical with the groundstate of the operator for the corresponding ionic-system with the one electron less, i.e.

$$E_0^+ = \inf \sigma_c(H).$$

The groundstate energy of E_0^+ in a.u. for the ⁴He⁺-ion is obtained to

$$E_0^+ = -2\frac{m_k}{m_e + m_k} = -2\frac{\kappa}{2 + \kappa} = -1.999727898$$

if the finite nuclear mass of the ⁴He is taken into account as against -2 a.u. for infinite mass.

With respect to E_0^+ the bounds for the nonrelativistic energies $\Delta E_i = E_i - E_0^+$ are

$$E_0^+ - E_i^* \le \Delta E_i \le E_0^+ - \lambda_i^*. \tag{4}$$

Since the experimental values from Herzberg [6] are obtained as wavenumbers ν_{exp} in cm⁻¹ the bounds from (4) which are given in a.u. have to be converted into wavenumbers ν 's via the Bohr radius $a_0 = \hbar^2/m_e e^2$.

This yields [11]

 $1 \text{ a.u.} \cong 219474.624 \pm 0.011 \text{ cm}^{-1}$

where the uncertainty of 0.011 cm^{-1} of the conversion factor has to be taken into account and accepted too. The latter is not evident because it is almost beyond the accuracy of which the fundamental constant e, h and m_e are known.

The calculated bounds for the ν 's and the experimental values ν_{exp}^{\pm} are shown in Table 3.

Bounds for the relativistic corrections (including the Lamb shift) are now obtained from

 $\nu_{\exp}^- - \nu_{\max} \leq \delta_i \leq \nu_{\exp}^+ - \nu_{\min}.$

We get in cm^{-1}

 $-2.177 \le {}^{1}\delta_{0} \le -1.855, \qquad 1.730 \le {}^{3}\delta_{0} \le 1.835.$

Pekeris values (relativistic corrections E_i plus Lamb shift) ${}^1\delta_0 = -1.903 \text{ cm}^{-1}$ [9] and ${}^3\delta_0 = 1.813 \text{ cm}^{-1}$ [7] calculated with the wavefunctions $\psi_i^{(\infty)}$ from $H^{(\infty)}$ are in these limits.

Table 3. Values for $v_{\text{max}} = E_0^+ - E_0^*$, $v_{\text{min}} = E_0^+ - \lambda_0^*$ and v_{exp}^{\pm} in cm⁻¹

	$ u_{ m max}$	$ u_{\min}$	ν_{exp}^+	ν_{exp}^{-}	
1 ¹ <i>S</i>	198312.847	198312.825	198310.97	198310.67	
$2^{3}S$	38452.950	38454.945	38454.78	38454.68	

Appendix

Only three types of integrals are necessary for the calculation of $||H\psi||$ and $(H\psi, \psi)$. With the volume element

 $d\tau = \frac{1}{8}x(u^2 - v^2) \, dx \, dv \, du$

and the region of integration

 $G: |v| \le x \le u, \qquad |v| \le u, \qquad 0 \le u \le \infty$

we have for p = -1, 0, ...; r, s, = 0, 1, ...; q = p + r + s

1.
$$I_1 = \int_G x^p u^r v^s e^{-\alpha u} d\tau = \frac{(q+2)!}{(s+1)(s+p+2)} \alpha^{-(9+3)}$$

2. $p \neq -1$ $I_2 = \int_G \frac{x^p u' v^s}{u^2 - v^2} e^{-\alpha u} d\tau$ $= \frac{q!}{p+1} \alpha^{-q-1} \sum_{\nu=1}^{[p+1/2]} \frac{1}{p+s-2\nu+2} + \varepsilon_p \Big[\ln 2 - \sum_{\nu=1}^s \frac{(-1)^{\nu}}{\nu} \Big]$ $\varepsilon_{2\mu} = 1, \ \varepsilon_{2\mu+1} = 0, \ [x] \text{ greatest whole number} \leq x, \ \sum_{\nu=1}^0 \cdots = 0.$ 3. p = -1

$$I_3 = \int_G \frac{u'v^s}{x(u^2 - v^2)} e^{-\alpha u} d\tau = q! \alpha^{-q-1} \left[\frac{\pi^2}{8} - \sum_{\nu=1}^S \frac{1}{(2\nu - 1)^2} \right]$$

Acknowledgement. We appreciate the assistance of Dr. G. Petermann Institut für Physikalische Chemie, Universität Düsseldorf, in translating this paper.

References

- 1. Kleindienst, H., Müller, W.: Theoret. Chim. Acta (Berl.) 56, 183 (1980)
- 2. Kleindienst, H., Baumgarten, E., Altmann, W.: Intern. J. Quantum Chem. 10, 887 (1976)
- 3. See Ref. [1], Eq. (7)
- 4. Bashkin, S., Stoner, J.: Atomic energy levels and Grotian diagrams, Amsterdam: North-Holland Publishing (1975)
- 5. Kolos, W., Roothaan, C. C. J., Sack, R. A.: Rev. Mod. Phys. 32, 178 (1960)
- 6. Herzberg, G.: Proc. Roy. Soc. London A248, 309 (1958)
- 7. Pekeris, C. L.: Phys. Rev. 126, 1470 (1962), Table IV
- 8. Bethe, H. A., Salpeter, E. E.: Quantum mechanics of one- and two-electron atoms, p. 166. Berlin: Springer-Verlag (1957)
- 9. Pekeris, C. L.: Phys. Rev. 115, 1216 (1959), Table I and V
- 10. Žislin, G. M.: Dokl. Akad. Nauk 122, 331 (1958), (Russian)
- 11. Taylor, B., Parker, W., Langenberg, D.: Rev. Mod. Phys. 41, 375 (1969)

Received February 16, 1981