THEORETICA CHIMICA ACTA
Theoret. Chim. Acta (Berl.) 59, 451-457 (1981) © Springer-Verlag 1981

Accurate Values for the Nonrelativistic Energies of the
Lowest Singlet and Triplet S-States of the ‘He-Isotop
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Accurate lower and upper bounds for the nonrelativistic lowest energies 'Eo
and *E, of the singlet and triplet-system of the “He-Isotop are calculated
with the linearized method of variance minimization. The same was done
for 'E; the energy of the first excited S-state 2's.

The results especially for 'E, and *Ej in a.u. are
—2.9033076997s < 'Eo=<—2.90330769215
—2.1749324263,<>Eo < —2.1749324245,
i.e. the values are determined with an absolute error smaller than

0.00167 cm™* for 'E, and 0.00039 cm ™! for *E,,.

Key words: Eigenvalue problems, nonrelativistic energies of the 4He—Isotop,
nuclear motion.

1. Introduction

In a previous work [1] the groundstate energy 'E, of the He-atom in the infinite
nuclear mass approximation was determined with an absolute error smaller than
0.0022 cm™'. As mentioned but not explicitly explained the calculation in that
paper was done with a Schrodinger operator transformed in symmetry adapted
coordinates

u=y+z, v=y—z

using the notation as in [2].
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If the nuclear motion is taken into account the corresponding Schrodinger
operator in these coordinates is

H=H+H", H®=H+V

with
L 209 & 4w 9 & 40 0
Ho= ax> x ox ou’ u’-v>ou au2 u’—v® ov
0 _2u(x2—vz) 3 20(x*-ud &
x(u*=0?) axou x(w’—v°) ox dv
1 8u
V=——-—7g—s
X u"—v

1 4 0* 3 8* ]
H® == [ R N SRR S _+20_]
2y =) u” ”au G av* ov

my

Kk =2—=14698,36 (m; = mige.).

e

These coordinates have the advantage that all integrals needed for the calculation
of |Hy|* and (Hy, ¢) have a remarkably simple form and could be expressed
explicitly as it is shown in the appendix.

Because |[H,|| < o for the used basis functions
Yors =x"uv’e”™™, a>0 (1)

all ¢, € Dy with Dy as the domain of H.

2. The Calculation of the Eigenvalues.

The determination of approximate values A* and the corresponding errors F*
for 1Eo, 3E, and 'E; was done with the linearized method of variance minimiz-
ation and the Wieland iteration, which yields a very effective method for the
calculation of the absolutely lowest eigenvalue. With the trick mentioned in [3]
every isolated eigenvalue could be made the absolutely smallest.

In order to obtain good lower bounds Temple’s formula
Ff

2)

— notation as in [1] — was used for the lowest singlet- and triplet S-states as well
as for the first excited S-state in the singlet system.

It has to be kept in mind that the application of Temple’s formula demands a
p; with E; <p; <E;,; where E;,; is the immediately following eigenvalue of E;
of H in the considered Hilbert-spaces. Remember that the singlet- and the
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Table 2. The A* and F*-values for the 3'S- and 33S-state in a.u.

dim V, A¥ F*.10* A*—VF*
3's 203 -2.0549 9.028 —-2.085
3°s 203 —2.0668 1.724 —2.080

tfiplet-states respectively are elements of separate symmetry adapted Hilbert-
spaces in which the eigenvalue problem and Temple’s formula can be formulated
independently.

The method of variance minimization gives suitable p;’s if it is ensured that the
error interval [A¥ —VF¥, A* +VF¥] contains one eigenvalue only, which has
to be E;. In the case of the 4He-Isotop the latter is guaranteed — for sufficient
small F¥ — by the knowledge of the correct sequence of the eigenvalues from
spectral data [4]. Independently suitable p;’s can be chosen from lower bounds
of the eigenvalues of the operator H'™, because it can be shown that H* is a
positive operator.

The results of the calculations of the A¥ values and corresponding errors F7 as
a function of the dimension of the vectorspace V, spanned by the ¢, with
constant a’s in (1) are shown in Table 1. The exponent a was chosen to a =3.5
for ']A¥, @ =1.1 for *A¥ and @ = 1.65 for 'A¥.

Upper bounds for the E; are the corresponding A . The listing of the Ritz values
A" [5] is omitted although they are calculated too. As a matter of fact they are
rarely better than the corresponding A *’s but their errors are considerably worse
than the minimal errors F* obtained with the A*’s.

To get lower bounds for the E;’s the necessary p;’s were evaluated from rough
A* and F* values for the 3'S- and 3°S-states. Latter were calculated by matrix
diagonalization with Householder’s method. The results in a.u. are shown in
Table 2. .

With *p; = —2.085, 'A% = —2.145680782¢ and 'FT =9,791 10~® we get the lower
bound 'E¥ = —2.1456823, from Eq. (2), i.e.

—2.1456823,<'E, = —2.1456807,

and 'E; is determined up to an absolute error smaller than 0.35 cm .

With 1po ='E ¥ and 3p0 = —2.080 the bounds for 1E0 and 3E0 given above were
calculated using the optimal A* — and F* values taken from dim V, = 1378.

3. The Influence of the Nuclear Motion for the 1'S and 2°S-State and the
Comparison with the Experimental Data

The calculated eigenvalues E; for the operator H = H © L /H* of the 4He—Isotop,
where the nuclear motion (H“ #0) is taken into account from the beginning,
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together with the eigenvalues E\> for H and the experimental values of
Herzberg [6] allow the discussion of two effects: first an accurate estimation of
the influence of the nuclear motion, second the calculation of bounds for the
relativistic corregtions (including the Lamb-shift).
a) Nuclear Motion
The influence of the nuclear motion as a whole is given by the difference
A;=E;—E®.
Bounds for A, and 3A, are obtained from
E§ —AF <sAg=A} -EF
with the lower and upper bound "E¥“” and 'A ™ for 'ES® from [1]in a.u.
—2.903724386¢=<'E§” =—2.903724376,
and the analog vatues for >ES® from the result of Pekeris [7]
-2.175229381,<E{” =-2.175229378,.
We get
'A0=91.452+0.002 cm™}
*Ag=65.173+0.002 cm ™.

Usually the nuclear motion is taken into account in the manner of Bethe and
Salpeter [8], i.¢. by the subsequent correction of the E\™ values, because only
these values with the eigenfunctions g{/,(-w) are available from calculations in the
infinite mass approximation. Apart from the fact, that the electron mass m, is
replaced by the reduced mass u = m, * my/m, + m;, an additional term, the mass-
polarization el appears. Together with the approximated values

16 =4.7854cm™, &% =0.2238cm™ 3)

from Pekeris [9] the “w-correction” of 'ES> and *E§® yields the following
amounts for the nuclear motion

'Ro=91.490cm™,  *A,=65.175cm™
obtained from

- my . 2 P
A= ————E("O) + &9 —E® = ——E™ 4 (')
me + ny 2 + K

They are in good agreement with the correct A-values given above.

b) The Relativistic Effects

Experimental values for atomic energies are referred to the first ionization
potential which was determined for the “He-Isotop by Herzberg [6] to

ILP. (*He)=198310.8,+0.15cm ™!
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In order to compare experimental with theoretical values the beginning of the
continuum of the operator H has to be known. As was shown first by Zislin
[10] for an atomic system the bottom of the continuum of H is identical with
the groundstate of the operator for the corresponding ionic-system with the one
electron less, i.e.

E; =inf . (H).
The groundstate energy of E in a.u. for the “He*-ion is obtained to

e o 2 = 1999727898
me+mk 2+K

Eg=-2
if the finite nuclear mass of the “He is taken into account as against —2 a.u. for
infinite mass.

With respect to Eg the bounds for the nonrelativistic energies AE; = E; — E; are

Ej —Ef=<AE;,=E§ —A¥ (4)

Since the experimental values from Herzberg [6] are obtained as wavenumbers
Vexp i cm™ the bounds from (4) which are given in a.u. have to be converted
into wavenumbers »’s via the Bohr radius ao = #> / meez.

This yields [11]
1a.u. 2219474.624+0.011 cm™

where the uncertainty of 0.011 cm™' of the conversion factor has to be taken
into account and accepted too. The latter is not evident because it is almost
beyond the accuracy of which the fundamental constant e, 4 and m, are known.

The calculated bounds for the »’s and the experimental values v, are shown
in Table 3.

Bounds for the relativistic corrections (including the Lamb shift) are now obtained
from

V;xp ~ VUmax=0; = V:xp = Vmin-
We get in cm ™
—2.177<'6,=-1.855, 1.730=35,=<1.835.

Pekeris values (relativistic corrections E; plus Lamb shift) 180=-1.903 cm™ ' [9]
and 280=1.813 cm™* [7] calculated with the wavefunctions ¢§°°) from H are
in these limits.

Table 3. Values for vy = Eg — Ef, vmin=Eg —A& and v%, in cm™

+ —
Ymax Ymin Vexp Vexp

! 198312.847 198312.825 198310.97 198310.67

1S
2’s 38452.950 38454.945 - 38454.78 38454.68
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Appendix

Only three types of integrals are necessary for the calculation of |Hy|| and
(Hy, ¢). With the volume element

dr =sx(u*—v?) dx dvdu
and the region of integration
G:lvl=x=u, lv|=u, O0su=o
we haveforp=-1,0,...;r,5=0,1,...;q=p+r+s

+2)! _
1. Il=jxuve“”d (g +2) a O
G

(s+D(s+p+2)
2. p#-—-1
p..r.s
12=I _xuv _audT
Gu —‘U
L R | fln2- 3 (—1>”]
= —_— g In2—
pi1® E prs—zpra M2 L
4]
€2, =1, 2,41 =0, [x] greatest whole number<yx, Y -:-=0.
v=1
3. p=~1

r.s 2 S 1
u?uv _ —g-1|1 T
— - ou = 1 a Pl -
L ch(uz—vz)e dr=qla [8 El(zu—1)2]
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