
Theoret. Chim. Acta (Berl.) 59, 451-457 (1981) 

THEORETICA CHIMICA ACTA 

�9 Springer-Verlag 1981 

Accurate Values for the Nonrelativistic Energies of the 
Lowest Singlet and Triplet S-States of the 4He-Isotop 
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Accurate  lower and upper  bounds for the nonrelativistic lowest energies l eo  
and 3Eo of the singlet and triplet-system of the 4He-Isotop are calculated 
with the linearized method of variance minimization. The same was done 
for aE1 the energy of the first excited S-state 2aS .  

The results especially for aEo and 3Eo in a.u. are 

-2 .90330769975 - l E o -  -2 .90330769218 

-2 .17493242637-< 3Eo-< -2 .17493242459 

i.e. the values are determined with an absolute error smaller than 
0.00167 cm -~ for l eo  and 0.00039 cm -1 for 3Eo. 

Key words: Eigenvalue problems, nonrelativistic energies of the 4He-Isotop,  
nuclear motion. 

1. Introduction 

In a previous work [1] the groundstate energy 1E0 of the He -a tom in the infinite 
nuclear mass approximation was determined with an absolute error smaller than 
0.0022 cm -1. As ment ioned but not explicitly explained the calculation in that 
paper  was done with a Schr6dinger operator  t ransformed in symmetry adapted 
coordinates 

u = y + z ,  v = y - z  

using the notation as in [2]. 

* P e r m a n e n t  address :  Rechenzentrum der Universit/it Diisseldorf 
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nuclear motion is taken into account the corresponding SchrSdinger If the 
opera tor  in these coordinates is 

H = H ( ~  (K), H(~ = H0 + V 

with 

0 2 2 O 0 2 4u O 0 2 4v O 
OX 2 X OX On 2 U2--/)  2 3U O/) ~ ~ U2--/)  2 OV 

H o =  2U(X2__ V2) 0 2 2 V ( X 2 - - U  2 ) O 2 

X(U2--1) z) OXO--"~ "1- X(U2--O 2) OX 0/.) 

1 8u 
V =  2 2 

X U --V 
2 

with 

K = 2 ink= 14698,36 (ink = m4He). 
m e  

These coordinates have the advantage that all integrals needed for the calculation 
of IIH~II = and (HO, O) have a remarkably  simple form and could be expressed 
explicitly as it is shown in the appendix. 

Because llnO,,rsll < oo for the used basis functions 

~,,s = xPurvSe -~ a > 0 (1) 

all &pr~, ~ DH with DH as the domain of H. 

2. The Calculation of the Eigenvalues 

The determinat ion of approximate  values A* and the corresponding errors F*  
for 1E0, 3E0 and 1E1 was done with the linearized method of variance minimiz- 
ation and the Wieland iteration, which yields a very effective method for the 
calculation of the absolutely lowest eigenvalue. With the trick ment ioned in [3] 
every isolated eigenvalue could be made the absolutely smallest. 

In order  to obtain good lower bounds Temple ' s  formula 

F* 

- notat ion as in [1] - was used for the lowest singlet- and triplet S-states as well 
as for the first excited S-state  in the singlet system. 

It has to be kept  in mind that the application of Temple ' s  formula demands  a 
pi with Ei < pl <E~+, where E~+, is the immediately following eigenvalue of E~ 
of H in the considered Hilbert-spaces.  R e m e m b e r  that the singlet- and the 
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Table 2. The h* and F*-values for the 3is - and 33S-state in a.u. 

dim V, h* F*.104 h*-~ff  u 

3iS 203 -2.0549 9.028 -2.085 
33S 203 -2.0668 1.724 -2.080 

H. Kleindienst, et al. 

triplet-states respectively are elements of separate  symmetry adapted Hilbert-  
spaces in which the eigenvalue prob lem and Temple ' s  formula can be formulated 
independently.  

The method of variance minimization gives suitable pi's if it is ensured that the 
error interval [h*- , / f f~*,  h* +~/ff-~*] contains one eigenvalue only, which has 
to be Ei. In the case of the 4He-Isotop the latter is guaranteed - for sufficient 
small F *  - by the knowledge of the correct sequence of the eigenvalues f rom 
spectral data [4]. Independent ly  suitable pi's can be chosen from lower bounds 
of the eigenvalues of the opera tor  H (~), because it can be shown that H (~) is a 
positive operator .  

The results of the calculations of the A* values and corresponding errors F *  as 
a function of the dimension of the vectorspace Vn spanned by the ~0prs with 
constant o~'s in (1) are shown in Table  1. The exponent  a was chosen to o~ = 3.5 
for 1ho*, a = 1.1 for 3A* and a = 1.65 for 111". 

Upper  bounds for the El are the corresponding h/*. The listing of the Ritz values 
h r [5] is omit ted although they are calculated too. As a mat ter  of fact they are 
rarely bet ter  than the corresponding h *'s but their errors are considerably worse 
than the minimal errors F *  obtained with the h*'s.  

To get lower bounds for the Eg's the necessary pi's were evaluated f rom rough 
h* and F*  values for the 31S - and 33S-states. Lat ter  were calculated by matrix 
diagonalization with Househo lde r ' s  method.  The results in a.u. are shown in 
Table 2. 

With lpi = -2 .085 ,  l~ 1" = -2 .1456807826 and iF*  = 9,791 10 =8 we get the lower 
bound 1E* = -2 .14568239 from Eq. (2), i.e. 

-2 .14568239-< 1El - -2 .14568079 

and 1E1 is determined up to an absolute error smaller than 0.35 cm -1. 

With lp0 = 1E* and 3p0 = - 2 . 0 8 0  the bounds for 1E0 and 3E0 given above were 
calculated using the optimal  h * - and F*  values taken f rom dim Vn -- 1378. 

3. The Influence of the Nuclear Motion for the 11S and 23S-State and the 
Comparison with the Experimental Data 

The calculated eigenvalues Ei for the operator  H = H (~) + H (K) of the 4He-Isotop,  
where the nuclear mot ion (H(~)r  0) is taken into account f rom the beginning, 
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together with the eigenvalues El  ~) for H C~~ and the experimental  values of 
Herzberg  [6] allow the discussion of two effects: first an accurate estimation of 
the influence of the nuclear motion, second the calculation of bounds for the 
relativistic corrections (including the Lamb-shift).  

a) Nuclear  Motion 

The influence of the nuclear motion as a whole is given by the difference 

Ai = El - E l  ~ .  

Bounds for 1Ao and 3Ao are obtained f rom 

Eo* - ,~ o *(~176 -< Ao -< ,~ o* - Eo *(~ 

with the lower and upper  bound lEo*(~176 and 1Ao*(~ for 1E(o~) from [1] in a.u. 

-2 .9037243866-< 1E(o~) -< -2 .9037243769 

and the analog values for 3E(o~) f rom the result of Pekeris [7] 

-2 .175229381o -< 3E(o~ -< -2.1752293782.  

We get 

1Ao = 91.452 4- 0.002 cm -1 

3Ao -- 65.173 4- 0.002 cm -1 

Usually the nuclear motion is taken into account in the manner  of Bethe and 
Salpeter [8], i.e. by the subsequent correction of the E l  ~176 values, because only 
these values with the eigenfunctions ~I ~) are available from calculations in the 
infinite mass approximation.  Apar t  f rom the fact, that the electron mass me is 

replaced by the reduced mass tz = me �9 mk /me  + rnk an additional term, the mass- 
polarization e ~ appears. Together  with the approximated values 

1 ~(0) - 1  3 ~(0) em = 4.7854 cm , e m =  0.2238 cm -1 (3) 

f rom Pekeris [93 the "/x-correction':  of lEmon) and 3E(o~176 yields the following 
amounts for the nuclear motion 

XAo = 91.490 cm -1, 37% -- 65.175 c m  -1 

obtained f rom 

~i rnk ElOO) + ~ )  _FT,?o) = _ 2 p!~)  + d ~ .  
m e + m k  ~ 2 + K  ~ '  

They are in good agreement  with the correct A-values given above. 

b) The Relativistic Effects 

Experimental  values for atomic energies are referred to the first ionization 
potential  which was determined for the 4He-Isotop by Herzberg  [6] to 

LP.  (4He) = 198310.824-0.15 cm -1 
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In  o rder  to compare  exper imenta l  with theoret ical  values the beginning of the 
con t inuum of the ope ra to r  H has to be known.  As  was shown first by  Zislin 
[10] for an a tomic  system the b o t t o m  of the con t inuum of H is identical with 
the grounds ta te  of the ope ra to r  for  the cor responding  ionic-system with the one 
e lectron less, i.e. 

E~- = inf o-c (H) .  

The  grounds ta te  energy  of  E~- in a.u. for the 4He+-ion is ob ta ined  to 

E~ = - 2  - - i n k  2 2 + K = - -1 .999727898  
t he  "if- mk 

if the finite nuclear  mass of the 4He is taken into account  as against - 2  a.u. for 
infinite mass. 

Wi th  respect  to E ~  the bounds  for  the nonrelativistic energies AEi = El - E ~  are 

E ~  - E *  - AEi <- E~- - A/*. (4) 

Since the exper imenta l  values f rom Herzbe rg  [6] are ob ta ined  as wavenumbers  
U~xp in cm -1 the bounds  f rom (4) which are given in a.u. have to be conver ted  
into wavenumbers  u 's  via the B o h r  radius ao = h2/mee 2. 

This yields [11] 

1 a.u. =" 2 1 9 4 7 4 . 6 2 4 + 0 . 0 1 1  cm -1 

where  the uncer ta in ty  of 0.011 cm -1 of the convers ion factor  has to be taken  
into account  and accepted  too. The  latter is not  evident  because  it is a lmost  
b e y o n d  the accuracy of  which the fundamenta l  constant  e, h and me are known.  

:t: 
The  calculated bounds  for  the u 's  and the exper imenta l  values V~xp are shown 
in Table  3. 

Bounds  for  the relativistic correct ions (including the L a m b  shift) are now ob ta ined  
f rom 

/ Jexp - -  / "max ~ 8 i  ~ / ]2xp - -  /"rain. 

W e  get in cm -1 

-2 .177___18o_<-1.855,  1.730_<380_<1.835. 

Pekeris  values (relativistic correct ions  E~- plus L a m b  shift) l g  0 : - 1 . 9 0 3  cm -1 [9] 
and 380 = 1.813 cm -~ [7] calculated with the wavefunct ions  ffl ~ f rom H (~) are 
in these limits. 

Table 3. Values for Vraax = E~- -Eo*, Vmin = E~- -A o* and v~p in cm -1 

+ 
~max ~min F exp Fexp 

11S 198312.847 198312.825 198310.97 198310.67 
23S 38452.950 38454.945 38454.78 38454.68 
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Appendix 

O n l y  t h r e e  types  of in teg ra l s  a re  n e c e s s a r y  for  the  c a l c u l a t i o n  of  [[Hdsi[ a n d  
(Hds, 4s). W i t h  the  v o l u m e  e l e m e n t  

d,c = ~x(u 2 -  v 2) dx dv du 

a n d  the  r e g i o n  of  i n t e g r a t i o n  

G: Ivl<-x<-u, Ivl<-u, O<_u<_oo 

we h a v e  for  p = , 1 ,  0 , . . .  ; r, s , = 0 ,  1 , . . .  ; q = p + r + s  

IG (q + 2) ! -(9-t-3) 
1. I1 = xPurv~e-<~Ud~ '=(s+l ) ( s+p+2)a  

2. 

. 

p ~ - i  

r xPurvS -~Ud. c 
I2 = J~ u2---~ v--~e 

_ q! -q-a ~ +ep l n 2 -  
p + l  a .=1 p + s - 2 v + 2  ~=1 

0 

e2~, = 1, eel,+1 = O, [x] g rea t e s t  w h o l e  n u m b e r  < x, ~ . . . .  O. 
v = X  

p = - I  

2 S 
f u"v< e - J  

13 = JG x (u-2-~-v 2) 
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